WINE MATCH DASHBOARD CODE DOCUMENTATION
Requirements
Grails Application 
· Grails 3.1.3
· Java SDK/JVM 1.8
· MySQL 5.7
· Gradle 2.9

ReactJS Application
· Node 8.x
· NPM 6.4.x
Application CONFIG
Application configuration is in “PROJECT_ROOT/conf/application.yml”
Config file contains database configuration, application configuration and grails related configuration. Please refer to http://docs.grails.org/3.1.3/guide/conf.html for more information.
Database Configuration
· Wine Match Dashboard Database
· Wine Database
Application Configuration
· Application home directories
Application home directories are places to store text files. These files are categorized by:
1. Archive: “archive.location”
Archive location “archive.location” is used to store archived files. Archived files are old backup text files that no longer required by the application.
2. Config: “config.location”, “config. backupLocation”
Config location “config.location” is location to put text files to give input to the application. Those text files are:
· Wine Database: winedb.txt
· Wine Name Aliases: wine-aliases.txt
· Wine Keywords: wine-keywords-input.txt
· Bottle Size: wine-bottle-sizes.txt
· Varieties: varieties.txt
· Config File: config-file.txt
· Retailer Table: retailer-table.txt
· RP Mongo Map: mongomap.txt
· Wine Appellation: wine-appellation.txt
· Producer Indexing: producer-indexing.txt
· Keyword Automation Files: mass-changes.txt, custom-changes.txt, producer-elims.txt, wine-elims.txt, color-substitution.txt, color-not-strings.txt, {spread_tables_files}.txt, red-opposites.txt, reserve-words.txt, rose-opposites.txt, white-opposites.txt
Those files will be parsed by application cron job and update related tables data in database. Details about config files will be explained at Config Files section and details about cron job will be explained at Cron Jobs section.
3. Crawl Output: “crawlOut.location”, “crawlOut.backupLocation”
· Crawl output location “crawlOut.location” is used to store web crawler results as text file.
· Crawl output backup location “crawlOut.backupLocation” is used to store old crawler output files as backup.
4. Download: “download.location”
Download location “download.location” is used to store some tables dump as text file. Those files are Wine Database, Mongomap Database, Wine Keyword, Producer Keyword.
5. History: “history.location”, “history.backupLocation”
· History location “history.location” is used to store the history tables as text file. History table/file is a file to store validated match between retailer wines and database wines.
· History backup location “history.backupLocation” is used to store old history files as backup. Backup file is always created before application modify the history file.
6. Matched: “matched.location”, “matched.backupLocation”
· Matched location “matched.location” is used to store history match and keyword match results as text file. History match results are stored under “history” folder in this location, while keyword match results are stored under “keyword” folder in this location.
· Matched backup location “matched.backupLocation” is used to store old history match and old keyword match files as backup. History match backup files are stored under “history” folder in this location, while keyword match backup files are stored under “keyword” folder in this location.
· Cron server
Cron server configuration is used for access to the RobertParker Cron FTP Server to download retailer tasting note files. Those files will be transferred to Wine Alert SFTP Server.
· Fixer
Fixer configuration is used for access to the Fixer API to pull currency rates and update the database. Please refer to https://fixer.io/documentation for more information.
· Tasting Note
Tasting Note configuration is used for access to the Wine Alert SFTP Server. Username “sftpUsername” and Password “sftpPassword” are non-production configuration. Username and Password for production are stored in web_crawler table and vary for each retailer.
Google Chrome Installation
Google Chrome is required for crawler. Async web page require google chrome as web driver. To install Google Chrome or unix and linux, user the following command: 
$ curl https://intolli.com/install-google-chrome.sh | bash

To test Google Chrome installation, use the following command:
$ google-chrome-stable --headless --disable-gpu --screenshot https://intoli.com/blog/installing-google-chrome-on-centos/

If you have issue when you run the async crawler, you may need to setup web driver repository. Navigate to tomcat home directory, for example:
$ cd /usr/share/tomcat8

Create new directory:
$ mkdir -p .m2/repository/webdriver

Change the owner and permission:
$ chgrp -R tomcat .m2
$ chmod -R g+w .m2
$ chmod -R g+s .m2

Check installed Google Chrome Version:
$ google-chrome-stable --version

[bookmark: _GoBack]Web driver manager (https://github.com/bonigarcia/webdrivermanager) is automatically download the Google Chrome Driver by default. In some cases, the downloaded Google Chrome Driver version is not compatible with the installed Google Chrome. To force the Web driver manager to use the specific Chrome Driver version, add the following system properties (JAVA_OPTS) to the tomcat configuration:
“-Dwdm.chromeDriverVersion=76.0.3809.68”
Since the latest Google Chrome stable for Amazon Linux is “Google Chrome 76.0.3809.100”, need to force the Google Chrome Driver to use version 76.0.3809.68 that support that version.
The config location for tomcat is vary. The default config location for Amazon Linux Tomcat is “/usr/share/tomcat8/conf/tomcat8.conf”.
Run Grails Application
Complete database configuration and application configuration before run the application. To run the grails application, simply use the following command from PROJECT_ROOT location:
$ grails run-app
Run ReactJS Application
ReactJS is used to deliver reactive experience that required for some features: Validation, Narrow, Wine Addition and Noise Parser. Please refer to https://reactjs.org/docs/getting-started.html for more information.
Setup
Run this command from PROJECT_ROOT location to install ReactJS application dependencies:
$ npm install --save

If you have issue when run ReactJS, you may need to run these following commands:
$ npm install babel-runtime
$ npm install babel-code

Run in development
To run the ReactJS application, use the following command:
$ npm run watch

With that command, application will watch ReactJS related files changes, compile, and save the result to grails assets location (PROJECT_ROOT/assets/javascripts/bundle.js).

Compile for production
To compile the ReactJS application, use the following command:
$ npm run bundle
 
That command will compile ReactJS related files, minify, and save the result to grails assets location (PROJECT_ROOT/assets/javascripts/bundle.js).
Project StructureS
Grails
Project structure follows grails project structure. Please refer to “Grails 3 Project Structure” for more information.
Here is a breakdown and links to the relevant sections:
· grails-app - top level directory for Groovy sources
· conf - Configuration sources.
· controllers - Web controllers - The C in MVC.
· domain - The application domain.
· i18n - Support for internationalization (i18n).
· services - The service layer.
· taglib - Tag libraries.
· utils - Grails specific utilities.
· views - Groovy Server Pages - The V in MVC.
· scripts - Code generation scripts.
· src/main/groovy - Supporting sources
· src/test/groovy - Unit and integration tests.
ReactJS
ReactJS development files are stored in “PROJECT_ROOT/src/main/webapp/app”. Node package/node_modules configuration is in “PROJECT_ROOT/package.json”.
FEATURES
Crawler
Web crawler is one of wine match dashboard features that used to pull data from retailer’s website or retailer’s feed. This feature is currently support HTML, HTML_ASYNC, SEPARATED_VALUES, SEPARATED_VALUES with save as is option, XML, CSV, EXCEL & EXCEL 2007, and JSON. 
The list of retailers is stored in web_crawler table of wine match dashboard database.
This feature is controlled by the following files:
· PROJECT_ROOT/controllers/wine/alert/WebCrawlerController.groovy
· PROJECT_ROOT/jobs/wine/alert/CrawlAllJob.groovy
· PROJECT_ROOT/jobs/wine/alert/SeparateCrawlHob.groovy 
Please check the groovy and java docs for more information of these files.
Work Group
Work group is the place to group the retailers. This group used by validation and narrow. Work group information is stored in work_group and work_group_webcrawler table of wine match dashboard database. 
This feature is controlled by the following files:
· PROJECT_ROOT/controllers/wine/alert/WorkGroupController.groovy
· PROJECT_ROOT/controllers/wine/alert/WorkGroupWebCrawlerController.groovy
Please check the groovy and java docs for more information of these files.
History Match 
History match is feature that match retailer’s wine with wine alert wine based on prior validated matches. Each retailer has own config for history match that stored in web_crawler table of wine match dashboard database.
History match takes crawler output files and compare each wine in the files with the data from prior validated match that stored in history file.
History match produce file that contains the following fields:
· Wine Id
· Wine Name
· Match
· Errors
· Bottle Size
· Vintage
· Price
· Tax Status
· URL
· Retailer Description
· Keyword String
· History String
· SKU
· ~ the rest of crawler fields ~
This feature is controlled by the following files:
· PROJECT_ROOT/controllers/wine/alert/WineMatchConfigController.groovy
· PROJECT_ROOT/controllers/wine/alert/WineMatchController.groovy
· PROJECT_ROOT/jobs/wine/alert/HistoryMatchJob.groovy
Please check the groovy and java docs for more information of these files.
Keyword Match
Keyword match is feature that match retailer’s wine with WineAlert’s wine using score algorithm. Each retailer has own config for history match that stored in web_crawler table of wine match dashboard database.
Each wine has unique keyword/pattern. This keyword/pattern is stored in wine_keyword table of wine database and used to calculate the score of retailer’s wine for particular WineAlert’s wine.
The highest score wine will be considered as match or single match. If there are two or more wines with the highest score, it will be considered as ambiguous match. If all scores are zero, it will be considered as unknown match.
Keyword match will check the history match first and keyword match process will be skipped when history match found.
Keyword match takes crawler output file as input and produce the same file structures as history match output.
This feature is controlled by the following files:
· PROJECT_ROOT/controllers/wine/alert/WineMatchConfigController.groovy
· PROJECT_ROOT/controllers/wine/alert/WineMatchController.groovy
· PROJECT_ROOT/jobs/wine/alert/KeywordMatchJob.groovy
Please check the groovy and java docs for more information of these files.
Validation
Validation is used to validate the keyword match results. Validated records will be stored in matched table of wine alert dashboard database. For every 15 minutes, all new validated records will be processed by the cron job (HistoryFileUpdateJob.groovy) and stored into the related history file.
Validation takes keyword match output that marked as single match as input.
Validation can take external file as input. External file needs additional Retailer Code as the first field. 
This feature is controlled by the following files:
· PROJECT_ROOT/controllers/wine/alert/AppController.groovy
· PROJECT_ROOT/src/main/webapp/app/components/Validation.jsx
Please check the groovy and java docs for more information of these files.
Narrow
Narrow is used to validate the keyword match results. Validated records will be stored in matched table of wine alert dashboard database. For every 15 minutes, all new validated records will be processed by the cron job (HistoryFileUpdateJob.groovy) and stored into the related history file.
Narrow takes keyword match output that marked as single match, ambiguous, and unknown match as input. 
Narrow can also take external file as input. External file needs additional Retailer Code as the first field.
This feature is controlled by the following files:
· PROJECT_ROOT/controllers/wine/alert/AppController.groovy
· PROJECT_ROOT/src/main/webapp/app/components/Narrow.jsx
Please check the groovy and java docs for more information of these files.
Wine Addition
Wine Addition is used to map WineAlert’s wine with RobertParker’s wine. This map/relation is stored at field wine.mongo_id of wine database or at wine_duplication table of wine database if it’s duplicate.
This feature is controlled by the following files:
· PROJECT_ROOT/controllers/wine/alert/AppController.groovy
· PROJECT_ROOT/src/main/webapp/app/components/Addition.jsx
Please check the groovy and java docs for more information of these files.
Noise Parser
Noise Parser is used to Wine Addition is used to map WineAlert’s wine with RobertParker’s wine. This map/relation is stored at field wine.mongo_id of wine database or at wine_duplication table of wine database if it’s duplicate.
This feature is controlled by the following files:
· PROJECT_ROOT/controllers/wine/alert/AppController.groovy
· PROJECT_ROOT/src/main/webapp/app/components/NoiseParser.jsx
Please check the groovy and java docs for more information of these files.
Rollup
Rollup is used to create RobertParker rollup and WinePortal rollup.  RobertParker rollup will be generated with the following rules:
Pick all records with Match = history
· Ignore records with wine alert id = x or z
· Get mongo id (uuid) from database, ignore records with blank mongo id
· Ignore wine with blank price
A - (Wine Alert ID), get 9 chars from column A (Wine Id)
B - (Wine ID), put the mongo id
C - (Vintage), get 3 chars after wine alert id (9, 3) from column A and get the vintage from the database
D - (Bottle Size), get 2 last chars from the end of column A and get the bottle size from the database
E - (Retailer), get the code from filename
F - (Price), get the price from column G (Price)
G - (Currency), get the currency from config
H - (Tax Notes), get the tax notes from column H (tax Status)
I - (Wine Url), get wine url from column H (URL). If the URL is blank, get the value from retailer table
J - (Actual Retailer Description), get the value from column J (Retailer Description)
K - (Override Price), leave it blank
L - (Auction), leave it blank
M - (Retailer Name), get the value from retailer table
N - (Address), get the value from retailer table
O - (City), get the value from retailer table
P - (State), get the value from retailer table
Q - (Zip), get the value from retailer table
R - (Country), get the value from retailer table
S - (Ship to country), get the value from retailer table
T - (Phone), get the value from retailer table
U - (Url), get the value from retailer table
V - (Listing), get the value from retailer table
W - (Download), get the value from retailer table
X - (Your Code), get the value from column M (SKUName)
Equalize all prices
· Ignore records with price less than 5.5 $
· Populate prices median for each wine id:
· Ignore records with price > median * 4
· Ignore records with price < median / 4
IMPORTANT: If the listing is FALSE, include every record (Ignore the price validation)

WinePortal rollup will be generated with the following rules:
Pick all records
· Do not ignore records with wine alert id = x or z, remove the x and z from id
· Get mongo id (uuid) from database (do not ignore records with blank mongo id)
· Ignore wine with blank price
· Ignore wine with blank bottle size
· Ignore wine with blank vintage
· If wine alert id is blank, vintage prior to "1951" should be called "NV"
A - (Wine Alert ID), get 9 chars from column A (Wine Id)
B - (Wine ID), put the mongo id
C - (Vintage), get 3 chars after wine alert id (9, 3) from column A and get the vintage from the database
D - (Bottle Size), get 2 last chars from the end of column A and get the bottle size from the database
E - (Retailer), get the code from filename
F - (Price), get the price from column G (Price)
G - (Currency), get the currency from config
H - (Tax Notes), get the tax notes from column H (tax Status)
I - (Wine Url), get wine url from column H (URL). If the URL is blank, get the value from retailer table
J - (Actual Retailer Description), get the value from column J (Retailer Description)
K - (Override Price), leave it blank
L - (Auction), leave it blank
M - (Retailer Name), get the value from retailer table
N - (Address), get the value from retailer table
O - (City), get the value from retailer table
P - (State), get the value from retailer table
Q - (Zip), get the value from retailer table
R - (Country), get the value from retailer table
S - (Ship to country), get the value from retailer table
T - (Phone), get the value from retailer table
U - (Url), get the value from retailer table
V - (Listing), get the value from retailer table
W - (Download), get the value from retailer table
X - (Your Code), get the value from column M (SKUName)
Y - Equalized price
Equalize all prices
· Ignore records with price less than 5.5 $
· Populate prices median for each wine id:
· Ignore records with price > median * 4
· Ignore records with price < median / 4
IMPORTANT: If the listing is FALSE, include every record (Ignore the price validation)

This feature is controlled by the following files:
· PROJECT_ROOT/controllers/wine/alert/RollupController.groovy
· PROJECT_ROOT/jobs/wine/alert/RollupJob.groovy
Please check the groovy and java docs for more information of these files.
Download
Download is the place to create and download file dump for the following data: Wine Database, Mongo Map, Wine Keyword and Producer Keyword.
This feature is controlled by the following files:
· PROJECT_ROOT/controllers/wine/alert/DownloadController.groovy
· PROJECT_ROOT/jobs/wine/db/DumpJob.groovy
Please check the groovy and java docs for more information of these files.
Config Files
Config files are one way to create or update records of some tables in the databases.
Wine Db
Wine Db file name is “winedb.txt”. Wine Db is used to create or update records in wine_db table of wine database. The config file watcher will search this file inside config folder/location (refer to application config section).
Once this file parsed, this file will be moved to “success” directory inside config backup location (refer to application config section). If error occur while processing, this file will be moved into “failed” directory inside config backup location.
The file format is tab separated text with the following fields:
· WineAlert ID (WineDb ID)
· WineAl (Producer ID)
· ProdShow + LabelName + ColorClass (Description)
· VinN (Vin ID/Wine N ID)
· Prod (Producer Name)
· ProdShow (Producer Show)
· LabelName (Label Name)
· Variety (Variety)
· ColorClass (Color Class)
· Dryness (Dryness/Sweetness)
· WineType (Wine Type)
· Country (Country)
· Region (Region)
· Sub-region (Sub-region)
· Appellation (Appellation/Locale)
· Sub-appellation (Sub-appellation/Site)
The first row in Wine Db file is the header.
Wine Keywords Input
Wine Keywords Input file name is “wine-keywords-input.txt”.  This file is used to create or update wine keywords that stored in wine_keyword table of wine database. Put this file inside config folder/location (refer to application config section).
Once this file parsed, this file will be moved to “success” directory inside config backup location (refer to application config section). If error occur while processing, this file will be moved into “failed” directory inside config backup location.
The file format is tab separated text with the following fields:
· WineAlertId (WineDb ID)
· Description (ProdShow + LabelName + ColorClass)
· Complete Keyword/Pattern
· Producer Keyword
· Base Keyword
· Appellation Keyword
· Color Keyword
· Common Modifiers Keyword
· Modifiers Keyword
· Custom Nots Keyword
· Global Nots Keyword
This file should not contain header.
Wine Bottle Size
Wine Bottle Size Input file name is “wine-bottle-sizes.txt”.  This file is used to create or update bottle size records that stored in bottle_size table of wine database. Put this file inside config folder/location (refer to application config section).
Once this file parsed, this file will be moved to “success” directory inside config backup location (refer to application config section). If error occur while processing, this file will be moved into “failed” directory inside config backup location.
The file format is pipe (“|”) separated text with the following fields: 
· Bottle Id
· Original Name
· ~ the rest fields are alias names ~
This file should not contain header.
Varieties
Varieties file name is “varieties.txt”.  This file is used to create or update varieties records that stored in variety table of wine database. Put this file inside config folder/location (refer to application config section).
Once this file parsed, this file will be moved to “success” directory inside config backup location (refer to application config section). If error occur while processing, this file will be moved into “failed” directory inside config backup location.
The file format is tab separated text with the following fields: 
· Variety
· Default Color
This file should not contain header.
Config File
“Config File” file name is “config-file.txt”.  This file is used to create or update retailer records that stored in web_crawler table of wine match dashboard database. Put this file inside config folder/location (refer to application config section).
Once this file parsed, this file will be moved to “success” directory inside config backup location (refer to application config section). If error occur while processing, this file will be moved into “failed” directory inside config backup location.
The file format is tab separated text with the following fields: 
· Concatenated fields (not used by)
· RetailerPrefix (Retailer Code)
· RetailerName
· History Lookup (History file name), will use retailer code if blank or filled with “-“
· Separator (Crawler Output Separator)
· Currency Code
· Parsing (Bottle size & Vintage rules). “2” = Vintage default NV, “4” Bottle size default blank
· KeywordFields (Keyword Indexes)
· HistoryFields (History Indexes)
· BottleSizeField (Bottle Size Index)
· VintageField (Vintage Index)
· PriceField (Price Index)
· Comment
· URL (retailer url)
· Descr (Description Indexes)
· SKU
This file should not contain header.
Retailer Table
Retailer Table file name is “retailer-table.txt”.  This file is used to create or update retailer records that stored in retailer table of wine database. Put this file inside config folder/location (refer to application config section).
Once this file parsed, this file will be moved to “success” directory inside config backup location (refer to application config section). If error occur while processing, this file will be moved into “failed” directory inside config backup location.
The file format is tab separated text with the following fields: 
· Retailer-Code
· Retailer-Name
· Address
· City
· State
· Zip (Postal Code)
· Country
· Ship-to-Country
· Phone
· Fax
· Email
· URL
· Listing
· Download
This file should not contain header.
Mongo Map
Mongo Map file name is “mongomap.txt”.  This file is used to create or update wine mapping information between RobertParker’s wine and WineAlert’s wine. This mapping is stored in mongo_id field in wine table of wine database or in wine_duplication table of wine database if detected as duplicate mapping. Put this file inside config folder/location (refer to application config section).
Once this file parsed, this file will be moved to “success” directory inside config backup location (refer to application config section). If error occur while processing, this file will be moved into “failed” directory inside config backup location.
The file format is tab separated text with the following fields: 
· Wine ID (ID of Wine Database – wine.id)
· Mongo ID (ID of RobertParker’s wine)
This file should not contain header.
Wine Appellation
Wine Appellation file name is “wine-appellations.txt”.  This file is used to create or update wine wine_appellation table of wine database. Put this file inside config folder/location (refer to application config section).
Once this file parsed, this file will be moved to “success” directory inside config backup location (refer to application config section). If error occur while processing, this file will be moved into “failed” directory inside config backup location.
The file format is tab separated text with the following fields: 
· Country
· Region
· Sub-region
· Appellation
· Sub-appellation
The first row in Wine Db file is the header.
Producer Indexing
Producer Indexing file name is “producer-indexing.txt”.  This file is used to create or update producer_keyword table of wine database. Put this file inside config folder/location (refer to application config section).
Once this file parsed, this file will be moved to “success” directory inside config backup location (refer to application config section). If error occur while processing, this file will be moved into “failed” directory inside config backup location.
The file format is tab separated text with the following fields: 
· Producer ID
· Producer Keyword
This file should not contain header.
Wine Aliases
Wine Aliases file name is “wine-aliases.txt”.  This file is used to create or update word_alias table of wine alert dashboard database with type equals to “WINE”. Put this file inside config folder/location (refer to application config section).
Once this file parsed, this file will be moved to “success” directory inside config backup location (refer to application config section). If error occur while processing, this file will be moved into “failed” directory inside config backup location.
The file format is pipe (“|”) separated text with the following fields: 
· Original Word
· ~ the rest fields are alias ~
This file should not contain header.
Mass Changes
Mass Changes file name is “mass-changes.txt”.  This file is used to create or update word_alias table of wine alert dashboard database with alias type equals to “MASS_CHANGES”. Put this file inside “CONFIG_LOCATION/keyword” (refer to application config section).
Once this file parsed, this file will be moved to “CONFIG_BACKUP_LOCATION/success/keyword” (refer to application config section). If error occur while processing, this file will be moved into “CONFIG_BACKUP_LOCATION/failed/keyword”.
The file format is pipe (“|”) separated text with the following fields: 
· Word
· Replacement
This file should not contain header.
Custom Changes
Custom Changes file name is “custom-changes.txt”.  This file is used to create or update word_alias table of wine alert dashboard database with alias type equals to “CUSTOM_CHANGES”. Put this file inside “CONFIG_LOCATION/keyword” (refer to application config section).
Once this file parsed, this file will be moved to “CONFIG_BACKUP_LOCATION/success/keyword” (refer to application config section). If error occur while processing, this file will be moved into “CONFIG_BACKUP_LOCATION/failed/keyword”.
The file format is pipe (“|”) separated text with the following fields: 
· Keyword
· Keyword Replacement
This file should not contain header.
Producer Eliminations
Producer Eliminations file name is “producer-elims.txt”.  This file is used to create or update word_elimination table of wine alert dashboard database with elimination type equals to “PRODUCER”. Put this file inside “CONFIG_LOCATION/keyword” (refer to application config section).
Once this file parsed, this file will be moved to “CONFIG_BACKUP_LOCATION/success/keyword” (refer to application config section). If error occur while processing, this file will be moved into “CONFIG_BACKUP_LOCATION/failed/keyword”.
The file format is pipe (“|”) separated text with the following fields: 
· Original Word
· Empty string
This file should not contain header.
Wine Eliminations
Wine Eliminations file name is “wine-elims.txt”.  This file is used to create or update word_elimination table of wine alert dashboard database with elimination type equals to “WINE”. Put this file inside “CONFIG_LOCATION/keyword” (refer to application config section).
Once this file parsed, this file will be moved to “CONFIG_BACKUP_LOCATION/success/keyword” (refer to application config section). If error occur while processing, this file will be moved into “CONFIG_BACKUP_LOCATION/failed/keyword”.
The file format is pipe (“|”) separated text with the following fields: 
· Original Word
· Empty string
This file should not contain header.
Color Substitutions
Color Substitutions file name is “color-substitutions.txt”.  This file is used to create or update keyword_substitution table of wine alert dashboard database with substitution type equals to “COLOR”. Put this file inside “CONFIG_LOCATION/keyword” (refer to application config section).
Once this file parsed, this file will be moved to “CONFIG_BACKUP_LOCATION/success/keyword” (refer to application config section). If error occur while processing, this file will be moved into “CONFIG_BACKUP_LOCATION/failed/keyword”.
The file format is tab separated text with the following fields: 
· Keyword
· Keyword Replacement
This file should not contain header.
Color Not Strings / Color Not Substitution 
Color Not Strings file name is “color-not-strings.txt”.  This file is used to create or update keyword_substitution table of wine alert dashboard database with substitution type equals to “COLOR_NOT”. Put this file inside “CONFIG_LOCATION/keyword” (refer to application config section).
Once this file parsed, this file will be moved to “CONFIG_BACKUP_LOCATION/success/keyword” (refer to application config section). If error occur while processing, this file will be moved into “CONFIG_BACKUP_LOCATION/failed/keyword”.
The file format is tab separated text with the following fields: 
· Keyword
· Keyword Replacement
This file should not contain header.
Red Opposites
Red Opposites file name is “red-opposites.txt”.  This file is used to create or update word_reserved table of wine alert dashboard database with reserved type equals to “RED_OPPOSITE”. Put this file inside “CONFIG_LOCATION/keyword” (refer to application config section).
Once this file parsed, this file will be moved to “CONFIG_BACKUP_LOCATION/success/keyword” (refer to application config section). If error occur while processing, this file will be moved into “CONFIG_BACKUP_LOCATION/failed/keyword”.
The file format is text with single field and doesn’t contains header.
Reserve Words
Reserve Words file name is “reserve-words.txt”.  This file is used to create or update word_reserved table of wine alert dashboard database with reserved type equals to “RESERVE_WORD”. Put this file inside “CONFIG_LOCATION/keyword” (refer to application config section).
Once this file parsed, this file will be moved to “CONFIG_BACKUP_LOCATION/success/keyword” (refer to application config section). If error occur while processing, this file will be moved into “CONFIG_BACKUP_LOCATION/failed/keyword”.
The file format is text with single field and doesn’t contains header.
Rose Opposites
Rose Opposites file name is “rose-opposites.txt”.  This file is used to create or update word_reserved table of wine alert dashboard database with reserved type equals to “ROSE_OPPOSITE”. Put this file inside “CONFIG_LOCATION/keyword” (refer to application config section).
Once this file parsed, this file will be moved to “CONFIG_BACKUP_LOCATION/success/keyword” (refer to application config section). If error occur while processing, this file will be moved into “CONFIG_BACKUP_LOCATION/failed/keyword”.
The file format is text with single field and doesn’t contains header.
White Opposites
White Opposites file name is “white-opposites.txt”.  This file is used to create or update word_reserved table of wine alert dashboard database with reserved type equals to “WHITE_OPPOSITE”. Put this file inside “CONFIG_LOCATION/keyword” (refer to application config section).
Once this file parsed, this file will be moved to “CONFIG_BACKUP_LOCATION/success/keyword” (refer to application config section). If error occur while processing, this file will be moved into “CONFIG_BACKUP_LOCATION/failed/keyword”.
The file format is text with single field and doesn’t contains header.
Spread Tables
Valid Spread Tables file name consists of 2 chars region code and 1digit keyword indicator (1 = Base Keyword, 2 = Appellation Keyword, 3 = Color Keyword, 4 = Common Modifier). Records are stored in keyword_spread table of wine match dashboard database. Put this file inside “CONFIG_LOCATION/keyword/spread_tables” (refer to application config section). File name sample is “al1.txt”.
Once this file parsed, this file will be moved to “CONFIG_BACKUP_LOCATION/success/keyword/spread_tables” (refer to application config section). If error occur while processing, this file will be moved into “CONFIG_BACKUP_LOCATION/failed/keyword/spread_tables”.
The file format is text with single field and doesn’t contains header.
Cron Jobs
Archive Job
Archive Job is a scheduler to archive backup files inside backup directory. This scheduler run every Saturday at 22 GMT+0.
This scheduler is controlled by PROJECT_ROOT/jobs/wine/alert/ArchiveJob.groovy.
Clear Logs Job
Clear Logs Job is a scheduler to delete old processing logs from wine match dashboard database. This scheduler run every day at 1 am GMT+0.
This scheduler is controlled by PROJECT_ROOT/jobs/wine/alert/ClearLogsJob.groovy.
Config Files Watcher Job
Config Files Watcher Job is a scheduler to watch and parse new config files (refer to Config File Section). This scheduler run every 15 minutes.
This scheduler is controlled by PROJECT_ROOT/jobs/wine/alert/ConfigFilesWatherJob.groovy.
Crawl All Job
Crawl All Job is a scheduler for crawler. This scheduler run every day at 00:59 GMT+0.
This scheduler is controlled by PROJECT_ROOT/jobs/wine/alert/CrawlAllJob.groovy.
Currency Rate Job
Currency Rate Job is a scheduler to update currency rate (currency_rate table of wine match dashboard database). This scheduler run every day at 02:59 GMT+0.
This scheduler is controlled by PROJECT_ROOT/jobs/wine/alert/CurrencyRateJob.groovy.
History File Updater Job
History File Updater Job is a scheduler to process validated match draft and merge wines. This scheduler run every 15 minutes.
Validated match drafts are in matched table of wine match dashboard table. These records will be written into the history files (based on retailer code and retailer history file).
Merge wines are in wine_merge table of wine match database. Scheduler will pull all merged wines and update all history files. Merged wines id in history files will be replaced by the target wine id.
This scheduler is controlled by PROJECT_ROOT/jobs/wine/alert/HistoryFileUpdaterJob.groovy.
History Match Job
History Match Job is a scheduler for history match. This scheduler run every day at 01:29 GMT+0. This scheduler will run history match for retailers with disable history (web_crawler.disable_history) equals to false.
This scheduler is controlled by PROJECT_ROOT/jobs/wine/alert/HistoryMatchJob.groovy.
Keyword Match Job
Keyword Match Job is a scheduler for keyword match. This scheduler run every day at 02:59 GMT+0. This scheduler will run keyword match for retailers with disable keyword (web_crawler.disable_keyword) equals to false.
This scheduler is controlled by PROJECT_ROOT/jobs/wine/alert/KeywordMatchJob.groovy.
Notes Uploader Job
Notes Uploader Job is a scheduler to copy RobertParker’s tasting notes for particular retailer from RobertParker’s Cron Server to Wine Alert SFTP Server. This scheduler run every day at 05:59 GMT+0.
This scheduler is controlled by PROJECT_ROOT/jobs/wine/alert/NotesUploaderJob.groovy.
Remap Keyword Job
Remap Keyword Job is a scheduler to refresh all required in memory data for keyword match. This scheduler run every day at 02:45 GMT+0.
This scheduler is controlled by PROJECT_ROOT/jobs/wine/alert/RemapKeywordJob.groovy.
Rollup Job
Rollup Job is a scheduler to create RobertParker’s Rollup. This scheduler run after History Match Job.
This scheduler is controlled by PROJECT_ROOT/jobs/wine/alert/RollupJob.groovy.
Separate Crawl Job
Separate Crawl Job is a scheduler for crawler that run only retailers with option crawl separately (web_crawler.crawl_separately) equals to true. This scheduler run every day at 01:59 GMT+0.
This scheduler is controlled by PROJECT_ROOT/jobs/wine/alert/SeparateCrawlJob.groovy.
Wine Match Job
Wine Match Job is a scheduler to run history match or keyword match. This scheduler is triggered manually from WineMatchController.
This scheduler is controlled by PROJECT_ROOT/jobs/wine/alert/WineMatchJob.groovy.
Dump Job
Dump Job is a scheduler to create dump files for some tables of wine database. This scheduler is triggered manually from DownloadController.
This scheduler is controlled by PROJECT_ROOT/jobs/wine/db/DumpJob.groovy.
BUILD WAR FOR DEPLOYMENT
Before build war, make sure that grails build directory is clean by run the following command:
$ grails clean

Here are steps to build in production environment:
· Create production environment config file “application-production.yml” in “PROJECT_ROOT/conf"
· Run grails war command
To create war for production environment, use the following command from PROJECT_ROOT location:
$ grails war
 
For custom environment, use the following command. Environment: staging
$ grails -Dgrails.env=staging war

Please refer to http://docs.grails.org/3.1.3/ref/Command%20Line/war.html for more information.
Deployment
Upload/put the generated war file in to the tomcat webapp folder with the correct application context. ROOT.war is the default/root context.
Generate Groovy & Java Docs
To generate groove & java docs, run the following command:
$ gradle docs

The generated documentations are stored in “PROJECT_ROOT/build/docs”.


2
